Friday 20 December 2013

Sustainable Synthesis of Phenols




Phenols synthesized within a few minutes in water with a recyclable deep eutectic solvent
Read more

Saturday 14 December 2013

Baeyer-Villiger oxidation

Baeyer-Villiger oxidation

Also known as: Baeyer-Villiger rearrangement

Schematic of the Baeyer-Villiger oxidation. Reagents: ketone, peroxyacid. Product: ester. Comments: The more electron rich group migrates to the oxygen.
The Baeyer-Villiger oxidation is an organic reaction used to convert a ketone to an ester using a peroxyacid (such as mCPBA). The reaction of the ketone with the acid results in a tetrahedral intermediate, with an alkyl migration following to release a carboxylic acid. The more electron rich R group migrates to the oxygen in this concerted process, allowing for accurate prediction of the stereochemistry of the product.[1]
.....................................................................................................................

Mechanism

Mechanism of the Baeyer-Villiger oxidation. Attack with another molecule of peroxyacid followed by deprotonation. As a positive charge is forming on the labeled oxygen (as the carbonyl group abstracts a proton from the acid), the more electron rich R group migrates to the oxygen to stabilize it.

.......................................................................

References:

1.
Baeyer, A.; Villiger, V. Ber. Dtsch. Chem. Ges. 189932, 3625–3633.

Tuesday 10 December 2013

Supercritical Carbon Dioxide: A Promoter of Carbon–Halogen Bond Heterolysis


Thumbnail image of graphical abstract

Angewandte Chemie International Edition

Volume 52Issue 50pages 13298–13301December 9, 2013

Thais Delgado-Abad, Dr. Jaime Martínez-Ferrer, Prof. Dr. Ana Caballero, Dr. Andrea Olmos, Prof. Dr. Rossella Mello, Prof. Dr. María Elena González-Núñez, Prof. Dr. Pedro J. Pérez and Prof. Dr. Gregorio Asensio
Article first published online: 15 OCT 2013 | DOI: 10.1002/anie.201303819

Amazing reaction medium: Supercritical carbon dioxide, with zero dipole moment, lower dielectric constant than pentane, and non-hydrogen-bonding behavior, ionizes carbon–halogen bonds, dissociates the resulting ion pairs, and escapes from capture by the carbocation intermediates at temperatures above 40 °C. These properties allow the observation of carbocation chemistry in the absence of acids.




Friday 29 November 2013

Thursday 21 November 2013

ASPIRIN SYNTHESIS AND MECHANISM

Synthesis

The synthesis of aspirin is classified as an esterification reaction. Salicylic acid is treated with acetic anhydride, an acid derivative, causing a chemical reaction that turns salicylic acid's hydroxyl group into an ester group (R-OH → R-OCOCH3). This process yields aspirin and acetic acid, which is considered a byproduct of this reaction. Small amounts of sulfuric acid (and occasionally phosphoric acid) are almost always used as a catalyst. This method is commonly employed in undergraduate teaching labs.
Aspirin synthesis.png
Reaction Mechanism
Acetylation of salicylic acid, mechanism