.
Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates
Mohammad Haji
Beilstein J. Org. Chem. 2016, 12, 1269–1301. published 21 Jun 2016
Chemistry Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
Corresponding author email mh_1395@yahoo.com
Associate Editor: T. J. J. Müller
Beilstein J. Org. Chem. 2016, 12, 1269–1301.
doi:10.3762/bjoc.12.121
Abstract
Multicomponent reactions (MCRs) are one of the most important processes for the preparation of highly functionalized organic compounds in modern synthetic chemistry. As shown in this review, they play an important role in organophosphorus chemistry where phosphorus reagents are used as substrates for the synthesis of a wide range of phosphorylated heterocycles. In this article, an overview about multicomponent reactions used for the synthesis of heterocyclic compounds bearing a phosphonate group on the ring is given.
Conclusion
In this article the use of different multicomponent reactions (MCRs) for the synthesis of heterocyclic phosphonates has been reviewed. This review demonstrates the synthetic potential of multicomponent reactions for the construction of phosphono-substituted heterocyclic rings. The Kabachnik–Fields reaction can be considered the starting point of multicomponent synthesis of this class of compounds. However, the major advancements in this interesting field have been achieved in recent years. More than 75% of the cited literature in this review has been published within the last six years, of which more than three quarters dealt with the synthesis of new heterocyclic phosphonates from non-heterocyclic phosphorus reagents. The remaining works reported the phosphorylation of parent heterocyclic systems. It is worth mentioning, that most of the cited publications focused on the synthesis of five and six-membered rings and only four articles described the synthesis of three and seven-membered heterocycles. Additionally, the majority of the reported syntheses were devoted to the development of new methodologies including the use of advanced catalytic systems, alternative solvents and microwave irradiation. Thus, the development of novel MCR based on phosphorous reagents would allow the synthesis of macrocyclic and medium or large-sized heterocyclic systems, substances which are currently underrepresented in the literature. Further, the design of new biocompatible scaffolds such as β-lactams and peptidomimetics possessing phosphonate groups by MCR-based strategies would significantly extend the synthetic potential of MCRs towards heterocyclic phosphonates
//////////multicomponent reactions, organophosphorus chemistry, phosphorus reagents, phosphorylated heterocycles
No comments:
Post a Comment