Friday 3 April 2015

LEVETIRACETAM GREEN PROCESS

Displaying image.png



Displaying image.png


Inline image 3




Inline image 4



Inline image 5





Inline image 6
Displaying image.png


Inline image 8

Displaying image.png

Displaying image.png
Displaying image.png

Displaying image.png


Inline image 13



P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent.
P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent.
P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent.





COCK WILL TEACH YOU NMR



COCK SAYS MOM CAN TEACH YOU NMR


DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK
Join me on twitterFollow amcrasto on Twitter     
Join me on google plus Googleplus

        

 amcrasto@gmail.com


Thursday 2 April 2015

Glycerol as solvent green obtain efficient beta-hydroxy esters


  Quim. New 2014 , 37 (3) , 545-548

 Glycerol as solvent green obtain efficient beta-hydroxy esters

Simone de Sousa Santos Oliveira I ; Sorele Baptist Fiaux I ; Igor Ramon Barreto Lomba I ; Estela Maris Freitas Muri I ; Maria da Conceição Klaus V. Ramos II ; Francisco Radler de Aquino Neto II ; Luiza Rosaria Sousa Dias I *
I School of Pharmacy, Federal Fluminense University, Mario Viana Street, 523, Santa Rosa, 24241-000 Niterói - RJ, Brazil II Institute of Chemistry, Federal University of Rio de Janeiro, Technology Center, Block A, University City, 21949- 909 Rio de Janeiro - RJ, Brazil * e-mail: ldias@vm.uff.br\


http://dx.doi.org/10.5935/0100-4042.20140088 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422014000300026&lng=en&nrm=iso&tlng=en


In this work, we report a new method for Obtaining racemic β -hydroxyesters by reduction of β -ketoesters. The use of glycerol as a reactional medium in selective reduction of β -ketoesters into the Corresponding alcohols was shown to be a viable and more efficient alternative Compared with the conventional methodology, taking into account green chemistry prerogatives. Keywords: β -ketoesters; β -hydroxyesters; glycerol.
 
Accordingly, presented here is a synthesis methodology β -hidroxiésteres by chemical reduction of β -cetoésteres with NaBH 4 ( above) using glycerol as Solvent Green compared to conventional methodology using methanol.     Compounds β -hidroxiésteres (RC (OH) CH 2 CO 2 R ') are important building blocks of other organic molecules,1-5 being the reduction of keto carbonyl β -cetoésteres one of the main ways of obtaining these compounds.Among the synthetic procedures which may be used to reduce the carbonyl grouping, often metal hydrides are used. Of these, especially borohydrides are indicated due to the low cost, simplicity of use, and is generally used as a means for reducing an organic solvent of medium polarity such as methanol. 6-10 Sodium borohydride (NaBH 4 ) is used as reagent, reaction selectivity due to the keto carbonyl. 11-12 However, the selectivity of this reagent in ketoesters compounds appears to be dependent on the reaction conditions, with the possibility of reducing the carbonyl and the carboxyl when using methanol as reaction medium.  Research in Green Chemistry has expanded the search for processes that contribute to the sustainability of the environment. This concept, introduced in the US in the 90s, proposes new approaches to the synthesis, processing and application of chemicals in order to prevent or reduce pollution caused by these activities.  The use of glycerol as a solvent in syntheses falls within the Green Chemistry concept and has attracted the attention of researchers. This alcohol triidroxilado has good compatibility with organic compounds, high boiling point, low volatility, and therefore environmental friendly. It resembles other polar organic solvents (DMF and DMSO) for their ability to dissolve organic compounds that are poorly water-miscible and facilitate the dissolution of inorganic salts. glycerol characteristics provide the use as Solvent Green in chemical synthesis reactions, given at least three principles of the Green Chemistry concept:. safer chemical synthesis, solvent insurance, and use of renewable raw materials
ethyl 3-oxobutanoate
For the sample of ethyl 3-oxobutanoate ( 1 ) and their reduction products was employed BGB-176B capillary column (25 mx 0.25 mm x 0.25 microns) to 90 ° C isotherm, T inj = 250 ° C, T det = 250 ° C (DIC). Reduction products of 3-oxopentanoate and ethyl 3-oxopentanoate Methyl ( 2 and 3 , respectively) were separated with the use of the same column. The column temperature initially at 40 ° C was increased at a 5 ° C / min rate to 150 ° C, t CH4 = 51 cm / s, split 1:20 flow rate, column flow 1.35 ml / min. T inj = 250 ° C, T det = 250 ° C (DIC). To ethyl 3-oxohexanoate ( 4 ) and 3- (4-chlorophenyl) -3-methyl oxopropanoate ( 8 ) and their reduction products was performed using the HP-10B CHIRAL column (30 mx 0.25 mm x 0 25 microns). To 3- (4-chlorophenyl) -3-methyl oxopropanoate ( 8 ) and the respective products, the column temperature was maintained initially for 10 min at 150 ° C, and elevated at a rate of 1.5 ° C / min to 190 ° C, t CH 4 = 61.7 cm / sec 1:20 split flow rate, column flow 2.39 ml / min, T inj = 250 ° C T det = 270 ° C (FID). Reduction product 4-chloro-3-oxobutanoate Methyl ( 5 ) were separated with the use of Lipodex E column (25 mx 0.25 mm). The column temperature initially at 70 ° C was increased at a rate of 5 ° C / min to 130 ° C (5 min) t CH 4 = 51.1 cm / s, flow split ratio 1: 100 Column Flow 2 57 ml / min., T inj = 250 ° C T det = 270 ° C (FID). For the 4,4,4-trichloro-3-oxobutanoate Ethyl ( 6 ) and their reduction products was also used to Lipodex E column (25 mx 0.25 mm). The column temperature initially at 70 ° C was increased at a rate of 5 ° C / min to 170 ° C (2 min) t CH 4= 50.5 cm / sec, column flow 2.58 ml / min., split 1 : 20; T inj = 250 ° C, T det = 250 ° C (DIC). To 4,4,4-trifluoro-3-oxobutanoate Ethyl ( 7 ) and reduction products, BGB-176 column was used (25 mx 0.25 mm x 0.25 microns) at 120 ° C isotherm (5 min ) t CH 4 = 50.1 cm / s, flow rate of division. 1: 100, column flow 1.06 ml / min, T inj = 250 ° C T det = 250 ° C (FID).

  Obtaining the compounds β -hidroxiésteres (1st to 8th) Method A: the reaction mixture of β corresponding -cetoéster (7.92 mM), NaBH 4 (7.92 mM) and methanol (10 mL) maintained in an ice bath at a temperature of 0 ° C and under constant magnetic stirring. Method B: Reaction mixture of β corresponding -cetoéster (7.92 mM), NaBH 4 (7.92 mM) and glycerol (10 ml), kept at room temperature and under constant magnetic stirring. In both methods, the end of the reaction was monitored by TLC and after acidification of the medium with hydrochloric acid solution (10% v / v), the reaction is carried out isolation. The reaction can be performed by isolation extraction with organic solvents immiscible in the reaction medium such as dichloromethane or ethyl acetate (4 x 20 ml), the ethyl acetate less aggressive to the environment and more suited to the principles of green chemistry. 29 Phase The organic layer was washed with saturated NaCl solution and then dried over MgSO 4 anhydrous, filtered and the solvent evaporated initially on rotary evaporator and then in high vacuum system with variable pressure. Th data of the corresponding B-ketoester compound.


Ethyl 3-hydroxybutanoate (1a). 30 Colorless liquid. IR (KBr, cm -1 ): 3440 (C-OH), 1730 (C = O).

  NMR 1 H (500 MHz) CDCl 3 / TMS ( δ ppm): 1.22 [3H, C H 3 -CH-OH]; 1.26 [3H, O-CH 2 -C H 3 ]; 2.44 [2H, CHOH-C H 2 -C = O]; 4.14 to 4.21 [3H, CH 3 C H OH, OC H 2 -CH 3 ]. GC (RT): 3.8 and 3.9; 3.6 th.

Ethyl 3-hydroxybutanoate    

  3-hydroxypentanoate acetate (2a). 30 colorless oily liquid. IR (KBr, cm -1 ): 3443 (C-OH), 1732 (C = O).NMR 1 H (500 MHz) CDCl 3 / TMS ( δ ppm): 0.94 [3H, C H 3 -CH 2 -CH-OH]; 1.25 [3H, O-CH 2 -C H 3 ]; 1.50 [2H, CH 3 -C H 2 -CH-OH]; 2.43 [2H, C H 2 -C = O]; 3.91 [1H, CH 3 -CH 2 -C H -OH]; 4.15 [2H, OC H 2 -CH 3 ].GC (Rt): 12.6 and 12.8; 12.3 th. 3-methyl hydroxypentanoate (3a) . 30 colorless oily liquid. IR (KBr, cm -1 ): 3450 (C-OH), 1645 (C = O).NMR 1 H (500 MHz) CDCl 3 / TMS ( δ ppm): 0.96 [3H, C H 3 -CH 2 -CH-OH]; 1.58 [2H, CH 3 -C H 2 -CH-OH];2.48 [2H, C H 2 -C = O]; 3.71 [3 H, OC H 3 ]; 3.94 [1H, CH 3 -CH 2 -C H -OH]. GC (Rt): 10.8 and 11.2; 10.5 th. 3-hydroxyhexanoate acetate (4a) . 30 colorless oily liquid. IR (KBr, cm -1 ): 3433 (C-OH), 1732 (C = O).NMR 1 H (500 MHz) CDCl 3 / TMS ( δ ppm): 0.90 [3H, C H 3 (CH 2 ) 2 CH-OH]; 1.22 [3H, O-CH 2 C H 3 ]; 1.54 [2H, CH 3 -C H 2 -CH 2 -CH-OH]; 1.71 [2H, CH 3 -CH 2 -C H 2 -CH-OH]; 2.50 [2H, C H 2 -C = O]; 3.90 [1H, CH 3(CH 2 ) 2 -C H -OH]; 4.15 [2H, OC H 2 - CH 3 ]. CG (tr): 16.2 and 16.6. 4-chloro-3-hydroxybutanoate Methyl (5a). 30 colorless oily liquid. IR (KBr, cm -1 ): 3415 (C-OH), 1732 (C = O). NMR 1 H (500 MHz) CDCl 3 / TMS ( δ ppm): 2.63 [2H, C H 2 -C = O]; 3.59 [2H, Cl-C H 2 -CH-OH]; 3.71 [3 H, OC H 3 ]; 4.25 [1H, Cl-CH 2 -C H -OH]. CG (tr): 10.7 and 10.9; 9.7 a . 4,4,4-trichloro-3-hydroxybutanoate acetate (6a). 30 yellowish oily liquid. IR (KBr, cm -1 ): 3430 (C-OH), 1731 (C = O). NMR 1 H (500 MHz) CDCl 3 / TMS ( δ ppm): 2.63 [2H, C H 2 -C = O]; 3.59 [2H, Cl-C H 2 -CH-OH]; 3.71 [3 H, OC H 3 ]; 4.25 [1H, Cl-CH 2 -C H -OH]. GC (Rt): 16.3 and 16.4; 10.9 at . 4,4,4-trifluoro-3-hydroxybutanoate acetate (7a). 30 yellowish oily liquid. IR (KBr, cm -1 ): 3430 (C-OH), 1725 (C = O). NMR 1 H (500 MHz) CDCl 3 / TMS ( δ ppm): 1.30 [3H, O-CH 2 -C H 3 ]; 2.70 [2 H, CF 3 -CHOH-CH 2 -C = O]; 3.77 [2H, OC H 2 CH 3 ]; 4.22 [1H, CF 3 -C H -OH]. CG (tr): 2.1 and 2.2; 1.8 a . 3- (4-chlorophenyl) -3-hydroxypropanoate Methyl (8a). 30 White solid. IR (KBr, cm -1 ): 3450 (C-OH), 1732 (C = O). NMR 1 H (500 MHz) CDCl 3 / TMS ( δ ppm): 2.71 [2H, C H 2 -C = O]; 3.73 [3 H, OC H 3 ]; 5.11 [1H, CH OH]; 7.33 [4H, p -Cl C 6 H 4 -CH-OH]. GC (Rt): 23.5 and 23.7; 4.3 to .

School of Pharmacy, Federal Fluminense University, Mario Viana Street

Universidade Federal Fluminense (UFF) BELOW

Samsung
brazil futuro
BRAZIL
Institute of Chemistry, Federal University of Rio de Janeiro,

Universidade Federal do Rio de Janeiro (UFRJ) BELOW

UFRJ Overview    
  Building in which the College of Medicine operated until 1973, ... ...............

An efficient and inexpensive device for undergraduate chemistry classes aiming teaching the photolytic synthesis concepts


Quim. Nova 2014, 37(1), 164-167,  2014

Um reator fotoquímico barato e eficiente para experimentos de química

Ramon Kenned Sousa AlmeidaI; Cláudia MartelliI; Gilson Herbert Magalhães DiasI; Julio Cesar Araujo da SilvaII, *
An efficient and inexpensive device for undergraduate chemistry classes aiming teaching the photolytic synthesis concepts. This device presents simplicity, low costs, class-compatible reaction times and good yields. Ramon Kenned Sousa Almeidaa , Cláudia Martellia , Gilson Herbert Magalhães Diasa e Julio Cesar Araujo da Silvab,* a Instituto de Química, Universidade Estadual de Campinas, 13083-970 Campinas – SP, Brasil b Instituto Federal de Ciência e Tecnologia de Santa Catarina, Estrada do Senadinho, s/no , Centro, 88625-000 Urupema – SC, Brasil A CHEAP AND EFFICIENT PHOTOCHEMICAL REACTOR FOR CHEMICAL EXPERIMENTS. In this work, we present an efficient and inexpensive device for undergraduate chemistry classes aimed at teaching and learning the photolytic synthesis concepts. A photochemical reactor was tested for the synthesis of the organometallic compound enneacarbonyldiiron from iron pentacarbonyl in acetic acid, and its formation evidenced by FTIR analysis. Although similar devices have been described in other studies, none of these offered the simplicity, low cost, class-compatible reaction times and good yields afforded by the procedure reported herein. Keywords: photochemistry; reactor; enneacarbonyldiiron.   Displaying image001.png   Displaying image002.png     Displaying image003.png     Displaying image004.png   Displaying image005.png   Displaying image006.png         Instituto de Química, Universidade Estadual de Campinas  
    1. Map of state university of meadows institute of chemistry
  Instituto Federal de Ciência e Tecnologia de Santa Catarina, Estrada do Senadinho
Campus Palhoça-Bilingue. Atualizado por Rafael Batista. O Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina ...     Aberto o concurso do Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina (IFSC). A seleção visa prover um total de 145 vagas.   Instituto Federal de Educação, Ciência e Tecnologia - Campus Rio do Sul - Cantagalo

Tuesday 31 March 2015

Simple and effective method for two-step synthesis of 2-(1,3-dithian-2-ylidene)-acetonitrile

Simple and effective method for two-step synthesis of 2-(1,3-dithian-2-ylidene)-acetonitrile (75% overall yield) and molecular modeling calculation of the mechanism by B3LYP and the 6-311++G(2df,2p) basis set.

http://dx.doi.org/10.5935/0100-4042.20140308

Publicado online: dezembro 12, 2014

Método alternativo para a síntese e mecanismo de 2-(1,3-ditiano-2-ilideno)-acetonitrila

Marcelle S. Ferreira; José D. Figueroa-Villar*
Quim. Nova, Vol. 38, No. 2, 233-236, 2015
Artigo http://dx.doi.org/10.5935/0100-4042.20140308
*e-mail: jdfv2009@gmail.com
MÉTODO ALTERNATIVO PARA A SÍNTESE E MECANISMO DE 2-(1,3-DITIANO-2-ILIDENO)-ACETONITRILA
Marcelle S. Ferreira e José D. Figueroa-Villar* Departamento de Química, Instituto Militar de Engenharia, Praça General Tiburcio 80, 22290-270
Rio de Janeiro – RJ, Brasil
Recebido em 18/08/2014; aceito em 15/10/2014; publicado na web em 12/12/2014
ALTERNATIVE METHOD FOR SYNTHESIS AND MECHANISM OF 2-(1,3-DITHIAN-2-YLIDENE)-ACETONITRILE. We report an alternative method for the synthesis of 2-(1,3-dithian-2-ylidene)-acetonitrile using 3-(4-chlorophenyl)-3-oxopropanenitrile and carbon disulfide as starting materials. The methanolysis of the intermediate 3-(4-chlorophenyl)-2-(1,3-dithian-2-ylidene)-3- oxopropanenitrile occurs via three possible intermediates, leading to the formation of the product at a 75% overall yield. Molecular modeling simulation of the reaction pathway using B3LYP 6-311G++(2df,2p) justified the proposed reaction mechanism. Keywords: 2-(1,3-dithian-2-ylidene)-acetonitrile; reaction mechanism; methanolysis; molecular modeling.
3-(4-clorofenil)-2-(1,3-ditiano-2-ilideno)-3-oxopropanonitrila (3): Cristal amarelo. Rendimento: 95%, 2,80 g, pf 158-160 °C, lit.21 159-160 °C;
IV (KBr, cm-1): 2198 (CN), 1612 (C=O), 1585, 1560 (aromático), 678 cm -1 (C-S);
1H RMN (300 MHz, CDCl3) δ 2,38 (m, J 6,9, 2H, CH2); 3,01 (t, J 6,6, 2H, SCH2); 3,17 (t, J 7,2 , 2H, SCH2); 7,43 (d, J 8,5, 2H); 7,83 (d, J 8,5, 2H);
13C RMN (75 MHz, CDCl3) δ 23,9 (CH2), 30,4 (SCH2), 104,2 (CCO), 117,5 (CN), 128,9, 130,5, 135,6, 139,2 (aromático), 185,2 (C=CS), 185,4 (CO).
21.......Rudorf, W. D.; Augustin, M.; Phosphorus Sulfur Relat. Elem. 1981, 9, 329.
...........................................
Síntese da 2-(1,3-ditiano-2-ilideno)-acetonitrila (1) Em um balão de fundo redondo de 100 mL foram adicionados 0,400 g (1,4 mmol) de 3-(4-clorofenil)-2-(1,3-ditiano-2-ilideno)-3- -oxopropanonitrila (2) dissolvidos em 15 mL de THF seco, 0,140 g (20 mmol) de sódio e 15 mL de metanol seco sob atmosfera de nitrogênio. A mistura reacional foi mantida sob agitação à 25 °C por 48 h. Em seguida, a mistura reacional foi dissolvida em 30 mL de água destilada e extraída com acetato de etila (3 x 20 mL). A fase orgânica foi seca em sulfato de sódio anidro, filtrada e concentrada a vácuo para se obter o produto bruto, que foi purificado por cromatografia em coluna (silica gel e hexano:acetato de etila 7:3).
2-(1,3-ditiano-2-ilideno)-acetonitrila (1): Cristal branco. Rendimento: 75%, 165 mg, pf. 60-63 °C, lit1 60-62 °C;
1 H RMN (300 MHz, CDCl3) δ 2,23 (m, J 6,8, 2H, CH2); 3,01 (t, J 7,5, 2H, SCH2); 3,06 (t, J 6,9, 2H, SCH2), 5,39 (s, 1H, CH);
13C RMN (75 MHz, CDCl3) δ 22,9 (CH2), 28,7 (SCH2), 28,8 (SCH2), 90,4 (CHCN), 116,3 (CN), 163,8 (C=CS).
1.........Yin, Y.; Zangh, Q.; Liu, Q.; Liu, Y.; Sun, S.; Synth. Commun. 2007, 37, 703.
 Acetonitrile, 1,3-dithian-2-ylidene-

CAS 113998-04-2

  • C6 H7 N S2
  • Acetonitrile, 2-​(1,​3-​dithian-​2-​ylidene)​-
  • 157.26
Melting Point60-62 °C
1H  NMR  predict
2-(1,3-dithian-2-ylidene)-acetonitrile
BR 1H
BR 1H 1
ACTUAL 1H NMR VALUES
1 H RMN (300 MHz, CDCl3)
δ 2,23 (m, J 6,8, 2H, CH2);
3,01 (t, J 7,5, 2H, SCH2);
3,06 (t, J 6,9, 2H, SCH2),
5,39 (s, 1H, CH);
..........................
13C NMR PREDICT
BR 13C
BR 13C 1
ACTUAL 13C NMR VALUE
13C RMN (75 MHz, CDCl3)
δ 22,9 (CH2),
28,7 (SCH2),
28,8 (SCH2),
90,4 (CHCN),
116,3 (CN),
163,8 (C=CS)
COSY NMR PREDICT
COSY NMR prediction (6)
SYNTHESIS
  Displaying image020.png



Displaying image016.png


Displaying image018.png
Displaying image019.png
Displaying image021.png
2-(1,3-ditiano-2-ilideno)-acetonitrila (1): Cristal branco. Rendimento: 75%, 165 mg, pf. 60-63 °C, lit1 60-62 °C;

1 H RMN (300 MHz, CDCl3) δ 2,23 (m, J 6,8, 2H, CH2); 3,01 (t, J 7,5, 2H, SCH2); 3,06 (t, J 6,9, 2H, SCH2), 5,39 (s, 1H, CH);

13C RMN (75 MHz, CDCl3) δ 22,9 (CH2), 28,7 (SCH2), 28,8 (SCH2), 90,4 (CHCN), 116,3 (CN), 163,8 (C=CS). 

WILL BE UPDATED WATCH OUT.....................
Departamento de Química, Instituto Militar de Engenharia, Praça General Tiburcio
Instituto Militar de Engenharia, Rio de Janeiro. BELOW
Entrada do antigo Instituto de Química da UFRGS, um prédio histórico
Equipe - Os módulos foram fabricados na Unisanta sob a supervisão do professor Luiz Renato Lia, coordenador do Curso de Engenharia Química, ...
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro
Praça General Tibúrcio
Praça General Tibúrcio com o Morro da Urca ao fundo
P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent.
P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent.
P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent.

Enzymatic resolution of antidepressant drug precursors in an undergraduate laboratory

 
EducaçãoQuim. Nova 2015, 38(2), 285-287

Enzymatic resolution of antidepressant drug precursors in an undergraduate laboratory

Luís M. R. SolanoI; Nuno M. T. LourençoII,*
This paper describes a multi-step chemo-enzymatic synthesis of antidepressant drug precursors.

http://dx.doi.org/10.5935/0100-4042.20140306

Publicado online: novembro 13, 2014
 
Quim. Nova, Vol. 38, No. 2, 285-287, 2015
 
Educação http://dx.doi.org/10.5935/0100-4042.20140306
 
*e-mail: nmtl@tecnico.ulisboa.pt
 
ENZYMATIC RESOLUTION OF ANTIDEPRESSANT DRUG PRECURSORS IN AN UNDERGRADUATE LABORATORY
 
Luís M. R. Solanoa and Nuno M. T. Lourençob,* a Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal b Departamento de Bioengenharia, Instituto de Biotecnologia e Bioengenharia, Instituto Superior Técnico, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
 
Recebido em 07/07/2014; aceito em 17/09/2014; publicado na web em 13/11/2014
The use of biocatalysts in synthetic chemistry is a conventional methodology for preparing enantiomerically enriched compounds. Despite this fact, the number of experiments in chemical teaching laboratories that demonstrate the potential of enzymes in synthetic organic chemistry is limited. We describe a laboratory experiment in which students synthesized a chiral secondary alcohol that can be used in the preparation of antidepressant drugs. This experiment was conducted by individual students as part of a Drug Synthesis course held at the Pharmacy Faculty, Lisbon University. This laboratory experiment requires six laboratory periods, each lasting four hours. During the first four laboratory periods, students synthesized and characterized a racemic ester using nuclear magnetic resonance spectroscopy and gas chromatography. During the last two laboratory periods, they performed enzymatic hydrolysis resolution of the racemic ester using Candida antarctica lipase B to yield enantiomerically enriched secondary alcohol. Students successfully prepared the racemic ester with a 70%-81% overall yield in three steps. The enzymatic hydrolysis afforded (R)- secondary alcohol with good enantioselectivity (90%–95%) and reasonable yields (10%–19%). In these experiments, students were exposed to theoretical and practical concepts of aromatic acylation, ketone reduction, esterification, and enzymatic hydrolysis. Keywords: sec-alcohols; esters; lípase; enantiomers; resolution.
READ AT
 Displaying image008.png
 
Displaying image010.png
 
Displaying image011.png
Displaying image012.png
Displaying image026.png
 
Displaying image028.png
Displaying image029.png
 
Displaying image030.png
 
Displaying image031.png
................