Wednesday, 4 January 2017

Acid Chloride Negishi Couplings

With the plethora of new and efficient C–C bond-forming reactions available to the organic chemists growing on a monthly basis, one area that suffers is the substrate scope for previously reported examples. In this case Kim and Reike ( Tetrahedron Lett. 2011, 52, 1523−1526) reinvestigate work originally reported by Rovis. Initially Kim performs a small catalyst screen using various commercially available catalysts, resulting in Ni(acac)2 being chosen for the remaining coupling reactions due to the rate of reaction and the isolated yield it facilitated. With a large selection of organozinc reagents via direct insertion developed by Reike, they then apply the developed conditions to 26 examples, all of which gave isolated product in good to excellent yields on gram scale.

Preparation of aryl ketones via Ni-catalyzed Negishi-coupling reactions with acid chlorides

Abstract

A Ni-catalyst-catalyzed cross-coupling reaction of organozinc reagents with acid chlorides has been successfully developed. Mild reaction conditions were required to complete the coupling reactions affording the corresponding aryl ketones in good to excellent yields.

Graphical abstract

 
Image for unlabelled figure
str2
str1
A representative procedure of coupling reaction; In a 25 mL round-bottomed flask, Ni(acac)2, (0.06 g, 2 mol%) and 10 mL (5 mmol) of 0.5 M solution of 2- (ehtoxycarbonyl)phenylzinc bromide in THF was added into the flask at room temperature. Next, 6-chloronicotinoyl chloride (0.70 g, 4 mmol) dissolved in 5.0 mL of THF was added. The resulting mixture was refluxed overnight, then cooled down to room temperature. Quenched with saturated NH4Cl solution, then extracted with ethyl acetate (30 mL 3). Combined organics were washed with saturated Na2S2O3 solution and brine. Dried over anhydrous MgSO4. A flash column chromatography (50% EtOAc/50% Heptane) gave 0.78 g of 3g as yellow solid in 68% isolated.
Mp = 48–51 C. 1
H NMR (CDCl3, 500 MHz): d 8.59 (s, 1H), 8.11 (d, 2H, J = 10 Hz), 7.69 (t, 1H, J = 5 Hz), 7.62 (t, 1H, J = 5 Hz), 7.43 (d, 1H, J = 5 Hz), 7.38 (d, 1H, J = 10 Hz), 4.17 (q, 2H, J = 5 10 Hz), 1.19 (t, 3H, J = 10 Hz);
13C NMR (CDCl3, 125 MHz): d 194.8, 165.6, 155.6, 151.2, 140.6, 138.8, 133.0, 131.9, 130.6, 130.4, 129.2, 127.5, 124.6, 61.9, 14.0.
1H AND 13C NMR PREDICT
str1 str2 str3 str4
 
//////
O=C(c1cnc(Cl)cc1)c2ccccc2C(=O)OCC

Monday, 2 January 2017

Highly Selective Phosgene-Free Carbamoylation of Aniline by Dimethyl Carbonate under Continuous-Flow Conditions

Abstract Image
Over the last 20 years organic carbamates have found numerous applications in pesticides, fungicides, herbicides, dyes, pharmaceuticals, cosmetics, and as protecting groups and intermediates for polyurethane synthesis. Recently, in order to avoid phosgene-based synthesis of carbamates, many environmentally benign and alternative pathways have been investigated. However, few examples of carbamoylation of aniline in continuous-flow apparatus have been reported. In this work, we report a high-yielding, dimethyl carbonate (DMC)-mediated carbamoylation of aniline in a fixed-bed continuously fed reactor employing basic zinc carbonate as catalyst. Several variables of the system have been investigated (i.e. molar ratio of reagents , flow rate, and reaction temperature) to optimize the operating conditions of the system.
Figure
Figure

Highly Selective Phosgene-Free Carbamoylation of Aniline by Dimethyl Carbonate under Continuous-Flow Conditions

Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Dorsoduro 2137, 30123 Venezia, Italia
Org. Process Res. Dev.201317 (4), pp 679–683
*Tel.: (+39) 041 234 8642. Fax: (+39) 041 234 8620. E-mail: tundop@unive.it.
 

PIETRO TUNDO

logo unive
Tundo300X292

Profile:

PIETRO R. TUNDO is Professor of Organic Chemistry at Ca’ Foscari University of Venice (Italy). 
He was guest researcher and teacher at College Station (Texas,1979-1981), Potsdam (New York, 1989-90) and Syracuse (New York, 1991-92), Chapel Hill, (North Carolina, 1995). 
He is Member of the Bureau of IUPAC.
P: Tundo is author of about 300 scientific publications, 40 patents and many books. 
His scientific interests are in the field of organic synthesis in selective methylations with low environmental impact, continuous flow chemistry, chemical detoxification of contaminants, hydrodehalogenation under multiphase conditions, phase-transfer catalysis (gas-liquid phase-transfer catalysis, GL-PTC), synthesis of crown-ethers and functionalized cryptands, supramolecular chemistry, heteropolyacids, and finally safe alternatives to harmful chemicals. 
He is the sole author of the book “Continuous flow methods in organic synthesis” E. Horwood Pub., Chichester, UK, 1991 (378 pp.), and editor of about 15 books.
P. Tundo was President of Organic and Biomolecular Chemistry Division of IUPAC (biennium 2007-2009) and holder of the Unesco Chair on Green Chemistry (UNTWIN N.o 731). He founded and was Chairman (2004-2016) of the Working Party on “Green and Sustainable Chemistry” of Euchems (European Association for Chemical and Molecular Sciences).
Founder of the IUPAC International Conferences Series on Green Chemistry, he was awarded by American Chemical Society on 1983 (Kendall Award, with Janos Fendler), and by Federchimica (Italian association of chemical industries) on 1997 (An Intelligent Future).
P. Tundo coordinated many institutional and industrial research projects (EU, NATO, Dow, ICI, Roquette) and was Director of the 10 editions of the annual Summer School on Green Chemistry (Venezia, Italy) sponsored by the EU, UNESCO and NATO.
He was guest researcher and teacher at College Station (Texas,1979-1981), Potsdam (New York, 1989-90) and Syracuse (New York, 1991-92), Chapel Hill, (North Carolina, 1995).
He is holder of the Unesco Chair on Green Chemistry (UNTWIN N.o 731) and author of about 260 scientific publications and 30 patents.
Scientific interests are in the field of organic synthesis in selective methylations with low environmental impact, continuous flow chemistry, chemical detoxification of contaminants, hydrodehalogenation under multiphase conditions, phase-transfer catalysis (gas-liquid phase-transfer catalysis, GL-PTC), synthesis of crown-ethers and functionalized cryptands, supramolecular chemistry and finally, heteropolyacids.
He is the sole author of the book "Continuous flow methods in organic synthesis" E. Horwood Pub., Chichester, UK, 1991 (378 pp.), and editor of about 15 books.
P. Tundo was President of Organic and Biomolecular Chemistry Division of IUPAC (biennium 2007-2009) and presently is Chairman of Working Party of "Green and Sustainable Chemistry" of Euchems (European Association for Chemical and Molecular Sciences).
Founder of the IUPAC International Conferences Series on Green Chemistry, he was awarded by American Chemical Society on 1983 (Kendall Award, with Janos Fendler), and by Federchimica (Italian association of chemical industries) on 1997 (An Intelligent Future).
P. Tundo co-ordinated many institutional and industrial research projects (EU, NATO, Dow, ICI, Roquette) and was Director of the 10 editions of the annual Summer School on Green Chemistry (Venezia), the latter sponsored by the EU, UNESCO and NATO.

Contact:

Professor of Organic Chemistry
Ca’ Foscari University of Venice
IUPAC Bureau Member
Tel. +39 041 2348642
Mob. +39 349 3486191
E-mail: tundop@unive.it
Phone041 234 8642 / Lab .: 041 234 8669
E-mailtundop@unive.it 
green.chemistry@unive.it - 6th IUPAC Conference on Green Chemistry
unescochair@unive.it - TUNDO Pietro
Fax041 234 8620
Webwww.unive.it/persone/tundop
////////Carbamoylation of Aniline, Dimethyl Carbonate, Continuous-Flow Conditions, flow synthesis
“ALL FOR DRUGS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This article is a compilation for educational purposes only.
P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

Sunday, 1 January 2017

Rhodium-catalyzed regiospecific C-H ortho-phenylation of benzoic acids with Cu/air as an oxidant





Rhodium-catalyzed regiospecific C-H ortho-phenylation of benzoic acids with Cu/air as an oxidant


Org. Chem. Front., 2017, Advance Article
DOI: 10.1039/C6QO00663A, Research Article
Shiguang Li, Guo-Jun Deng, Feifei Yin, Chao-Jun Li, Hang Gong
An efficient and practical synthetic approach for the regiospecific C-H ortho-phenylation of aromatic carboxylic acids in the absence of silver.

Rhodium-catalyzed regiospecific C–H ortho-phenylation of benzoic acids with Cu/air as an oxidant

Shiguang Li,a   Guo-Jun Deng,a   Feifei Yin,a  Chao-Jun Li*b and   Hang Gong*a  *
Corresponding authors
a
The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
 E-mail: hgong@xtu.edu.cn
b
Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Canada
 E-mail: cj.li@mcgill.ca
Org. Chem. Front., 2017, Advance Article

DOI: 10.1039/C6QO00663A
























http://pubs.rsc.org/en/Content/ArticleLanding/2017/QO/C6QO00663A#!divAbstract

The development of an efficient and practical synthetic approach for the regiospecific C–H ortho-phenylation of aromatic carboxylic acids without the use of silver or costly coupling partners is reported. The rhodium-catalyzed C–H phenylation proceeded in the presence of Cu/air as a terminal oxidant. In most cases, numerous inactivated benzoic acids could couple with low-cost NaBPh4 to obtain good to excellent yields.

A solution of aromatic acid 1a (27.2 mg, 0.2 mmol), NaBPh4 (0.27 g, 0.8 mmol), KF (46 mg, 0.8 mmol), [Rh(nbd)Cl]2 (9.2 mg, 0.02 mmol) and CuBr2 (4.5 mg, 0.02 mmol) in chlorobenzene (1.2 mL) was stirred in a sealed tube under air at 150 oC for 24 h. The reaction mixture was then cooled to room temperature and acidified by dilute aqueous HCl to pH<3, and then the solvent was evaporated in vacuo. The residue was purified by preparative thin-layer chromatography (TLC) on silica gel with petroleum ether and ethyl acetate as eluent to give the pure product 2a.


2a White solid; Yield 86%; Mp 132-134 oC [lit1 mp 133-135oC]; IR (neat) νmax 3057, 2917, 2849, 2627, 1682, 1461, 1133, 1064, 1000, 759, 696 cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.35-7.40 (m, 6H), 7.23 (m, 2H), 2.45 (s, 3H); 13C NMR (100 MHz, CDCl3) δ = 174.5, 140.7, 140.2, 135.5, 132.2, 129.7, 129.2, 128.4 (2C), 127.6, 127.5, 20.0; HRMS (ESI) m/z calcd for C14H13O2 213.0910, found [M+H] + 213.0912.




//////////

Monday, 26 December 2016

Eco-Friendly, Catalyst and Solvent-Free, Synthesis of Acetanilides and N-Benzothiazole-2-yl-acetamides




N-(o-Tolyl)acetamide (3b) White solid, 51.5 mg, 71% yield; m.p. 108.4-109.0 °C (Lit.27 108-109 °C); IR (KBr) n / cm-1 3291, 1647, 1587, 1527, 1458, 1369, 1271, 1116, 1039, 933, 854, 756, 698, 651, 607; 1H NMR (500 MHz, CDCl3) d 2.19 (s, 3H, CH3), 2.30 (s, 3H, CH3), 7.10 (t, 1H, J 7.5 Hz, CH), 7.21 (t, 1H, J 8.0 Hz, CH), 7.71 (d, 1H, J 8.0 Hz, CH); 13C NMR (125 MHz, CDCl3) d 17.8, 24.2, 123.7, 125.4, 126.7, 129.7, 130.5, 135.6, 168.6.






Short ReportJ. Braz. Chem. Soc. 2016

Eco-Friendly, Catalyst and Solvent-Free, Synthesis of Acetanilides and N-Benzothiazole-2-yl-acetamides

Silvio Cunha; Lourenço L. B. de Santana
An expeditious and green synthesis of acetamides is described in good yield without external heating, and with simple purification. 

This paper is part of the PubliSBQ Special Issue in honor of the late Prof Angelo da Cunha Pinto.

http://dx.doi.org/10.21577/0103-5053.20160265

Published online: September 27, 2016.


////////

Synthesis of symmetrical pyridines by iron-catalyzed cyclization of ketoxime acetates and aldehydes





Synthesis of symmetrical pyridines by iron-catalyzed cyclization of ketoxime acetates and aldehydes


Green Chem., 2017, Advance Article
DOI: 10.1039/C6GC03137D, Paper
YuKun Yi, Mi-Na Zhao, Zhi-Hui Ren, Yao-Yu Wang, Zheng-Hui Guan
A facile iron-catalyzed cyclization of aldehydes with ketoxime acetates for the synthesis of multisubstituted symmetrical pyridines has been developed.


Synthesis of symmetrical pyridines by iron-catalyzed cyclization of ketoxime acetates and aldehydes

YuKun Yi,a   Mi-Na Zhao,a   Zhi-Hui Ren,a  Yao-Yu Wanga and   Zheng-Hui Guan*a  

*
Corresponding authors
a
Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
 E-mail: guanzhh@nwu.edu.cn
Green Chem., 2017, Advance Article

DOI: 10.1039/C6GC03137D























http://pubs.rsc.org/en/Content/ArticleLanding/2017/GC/C6GC03137D?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract


A novel and facile iron-catalyzed cyclization of ketoxime acetates and aldehydes for the green synthesis of substituted pyridines has been developed. In the presence of a FeCl3 catalyst, this reaction exhibited a good functional group tolerance to produce 2,4,6-triarylsubstituted symmetrical pyridines in high yields in the absence of any additive. A gram-scale reaction sequence was performed to demonstrate the scaled-up applicability of this synthetic method.




4-Phenyl-2,6-di-p-tolylpyridine (3bb). Yield 70% (47.0 mg); Yellow solid; mp 148-150 o C; S-3

1 H NMR (400 MHz, CDCl3): δ 8.09 (d, J = 8.0 Hz, 4H), 7.82 (s, 2H), 7.72 (d, J = 7.2 Hz, 2H), 7.52-7.45 (m, 3H), 7.31 (d, J = 8.0 Hz, 4H), 2.42 (s, 6H).

13C NMR (100 MHz, CDCl3): δ 157.3, 149.9, 139.2, 138.9, 136.8, 129.4, 129.0, 128.8, 127.1, 126.9, 116.5, 21.3.

HRMS Calcd (ESI) m/z for C25H22N: [M+H] + 336.1747. Found: 336.1731.





//////////

Friday, 2 December 2016

Product Control Using Substrate Design



Product Control Using Substrate Design

New class of cyclic Weinreb amides for oxidative C-H olefination or Heck reaction

Read more

Sunday, 6 November 2016

Silver-initiated radical ring expansion/fluorination of ethynyl cyclobutanols: efficient synthesis of monofluoroethenyl cyclopentanones



Silver-initiated radical ring expansion/fluorination of ethynyl cyclobutanols: efficient synthesis of monofluoroethenyl cyclopentanones


Green Chem., 2016, Advance Article
DOI: 10.1039/C6GC02656G, Communication
Qingshan Tian, Bin Chen, Guozhu Zhang
A stereoselective synthesis of [small beta]-halogenated 2-methylenecyclopentanones via silver-catalyzed formal ring expansion using water as the cosolvent is described.


Silver-initiated radical ring expansion/fluorination of ethynyl cyclobutanols: efficient synthesis of monofluoroethenyl cyclopentanones

Qingshan Tian,a   Bin Chena and   Guozhu Zhang*a  
*
Corresponding authors
a
State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
E-mail: guozhuzhang@sioc.ac.cn
Green Chem., 2016, Advance Article

DOI: 10.1039/C6GC02656G




















A stereoselective synthesis of β-halogenated 2-methylenecyclopentanones via silver-catalyzed formal ring expansion using water as the cosolvent is described. A variety of 2-methylenecyclopentanones with fluoro, chloro and bromo functionalities are efficiently prepared from 1-alkynyl cyclobutanols. This method offers facile access to halogenated complex molecules which are not only useful chemicals but also valuable building blocks for further derivatizations.






1-(m-tolylethynyl)cyclobutan-1-ol (1b) Yield: 89%; Yellow oil;

1H NMR (400 MHz, CDCl3)

δ 7.25 (s, 1H), 7.23 (d, J = 8.1 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.10 (d, J = 7.5 Hz, 1H), 2.51 (dt, J = 15.8, 6.3 Hz, 2H), 2.34 (t, J = 9.3 Hz, 2H), 2.30 (s, 3H), 1.85 (m, 2H);

13C NMR (100 MHz, CDCl3)

δ 137.94, 132.27, 129.19, 128.72, 128.17, 122.49, 92.16, 83.58, 68.31, 38.64, 21.20, 12.98; HRMS (EI+ , 70 eV): C13H14O [M]+ : calcd. 186.1045, found 186.1047








(E)-2-(fluoro(phenyl)methylene)cyclopentan-1-one (2a) Yield: 85%; Colorless oil;

1H NMR (400 MHz, CDCl3) δ 7.79 (dd, J = 8.0, 1.5 Hz, 2H), 7.46-7.40 (m, 3H), 2.94 (td, J = 7.3, 3.3 Hz, 2H), 2.43 (td, J = 7.9, 1.2 Hz, 2H),1.99 (m, 2H);

13C NMR (100 MHz, CDCl3) δ 204.7 (d, J = 14.4 Hz), 162.4 (d, J = 270.7 Hz), 131.1, 130.0, 129.7, 128.7 (d, J = 7.0 Hz), 127.8, 117.3 (d, J = 19.4 Hz), 40.7 (d, J = 4.3 Hz), 27.6 (d, J = 3.9 Hz), 19.4;

19F (376 MHz, CDCl3) δ -76.9;

HRMS (EI+ , 70 eV): C12H11FO [M]+ : calcd. 190.0794, found 190.0795.








////////