Showing posts with label 3. Show all posts
Showing posts with label 3. Show all posts

Saturday, 9 April 2016

9-(1H-indol-3-yl)-5-methoxy-3,3- dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-one



  • Green Chem., 2016, Advance Article
    DOI: 10.1039/C6GC00137H, Paper
    Someshwar D. Dindulkar, Daham Jeong, Eunae Cho, Dongjin Kim, Seunho Jung
    A novel biosourced saccharide catalyst, microbial cyclosophoraose, a cyclic [small beta]-(1,2) glucan, was used for the synthesis of indolyl 4H-chromenes via a one pot three-component Knoevenagel-Michael addition-cyclization reaction in water under neutral conditions.


Microbial cyclosophoraose as a catalyst for the synthesis of diversified indolyl 4H-chromenes via one-pot three component reactions in water


 http://pubs.rsc.org/en/Content/ArticleLanding/2016/GC/C6GC00137H?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

Microbial cyclosophoraose as a catalyst for the synthesis of diversified indolyl 4H-chromenes via one-pot three component reactions in water

*
Corresponding authors
a
Institute for Ubiquitous Information Technology and Applications (UBITA) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul 143-701, South Korea 
E-mail: shjung@konkuk.ac.kr
b
Nelson Mandela African Institution of Science and Technology, PO box 447, Arusha, Tanzania
c
Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 143-701, South Korea
Green Chem., 2016, Advance Article

DOI: 10.1039/C6GC00137H




















 As a novel biosourced saccharide catalyst, microbial cyclosophoraose, a cyclic β-(1,2) glucan, was used for the synthesis of therapeutically important versatile indolyl 4H-chromenes via a one pot three-component Knoevenagel–Michael addition–cyclization reaction of salicylaldehyde, 1,3-cyclohexanedione/dimedone, and indoles in water under neutral conditions. A possible reaction mechanism through molecular complexation is suggested based on 2D ROESY NMR spectroscopic analysis. Moreover, green chemistry metric calculations were carried out for a model reaction, indicating the satisfactory greener approach of this method, with a low E-factor (0.18) and high atom economy (AE = 91.20%). The key features of this protocol are based on two critical factors where the first is to use a novel eco-friendly supramolecular carbohydrate catalyst and the second is its fine green properties such as compatibility with various substituted reactants, recyclability of the catalyst, chromatography-free purification, high product selectivity, and clean conversion with moderate to excellent yields in an aqueous medium.



 9-(1H-indol-3-yl)-5-methoxy-3,3- dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-one (4a):


 (2-hydroxy-3-methoxybenzaldehyde 1, Dimedone 2








////////

Monday, 31 August 2015

Novel 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine bearing substituted phenylquinolin-2-one moiety

General structure of final synthesized derivatives.
Figure 1.
General structure of final synthesized derivatives.



Synthetic Scheme for 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine bearing substituted ...
Scheme 1. 
Synthetic Scheme for 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine bearing substituted phenylquinolin-2-one (4a4t). Where R = H, 2-Br, 3-Br, 4-Br, 2-Cl, 3-Cl, 4-Cl, 2-F, 3-F, 4-F, 2-NO2, 3-NO2, 4-NO2, 2-CH3, 3-CH3, 4-CH3, 2-OCH3, 3-OCH3, 4-OCH3, 3,4,5-t-OCH3. Reagents and conditions: (a) C2H5OH, Nitrobenzene, Con. H2SO4, reflux, 80 °C, 4 h; (b) chloroacetic acid, NaHCO3, water, CuO, reflux, 80 °C, 5 h; (c) thiocarbohydrazide, Δ, 2 h; (d) phenacyl bromide, anhydrous ethanol, NH4OH, 50 °C, 6 h.
 In the present work twenty derivatives of phenylquinoline-1,2,4-triazolothiadiazines were synthesized. The structures of the synthesized compounds were established by spectral data. According to IR spectroscopic data compounds (4a4t) showed peaks at 1306–1330 cm−1, 650–682 cm−1 due to -Ndouble bond; length as m-dashC and Csingle bondSsingle bondC stretching vibrations respectively and no absorption peaks at 3140–3280 cm−1, 3050–3090 cm−1 due to -NH2 and -SH groups respectively indicated smooth cyclization of triazoles leading to the formation of thiadiazine ring. Further, 1H NMR spectra of the synthesized compounds were confirmed by the appearance of Ssingle bondCH2 proton of 1,3,4-thiadiazine ring at 4.40–4.54 ppm and single bondCH2 proton at 5.97–6.20 ppm as broad singlet. All other aromatic protons were observed at expected region. Mass spectra (ESI-MS) of all the synthesized compounds showed molecular ion [M + H]+ peak in agreement with their molecular formula. Physical and elemental analyses are listed in Table 1.


2.6.20. 6,7,8-Trimethoxy-4-phenyl-1-({6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl}methyl)-1,2-dihydroquinolin-2-one (4t)

White needle Crystal; IR (KBr, cm−1): 3023 (Ar Csingle bondH str), 2901 (Aliphatic Csingle bondH str),1706 (Cdouble bond; length as m-dashO str), 1620 (Cdouble bond; length as m-dashN str), 1564 (Cdouble bond; length as m-dashC str), 1330 (Ar Csingle bondN str), 683 (Csingle bondSsingle bondC); 1H NMR (CDCl3, 300 MHz): δ (ppm): 3.84 (s, 9H, 3xOCH3), 4.51 (s, 2H, Ssingle bondCH2single bond), 5.98 (s, 2H, CH2), 6.85 (s, 1H, CHdouble bond; length as m-dash), 7.45(d, 2H, J = 8.5 Hz, Arsingle bondH), 7.48(m,5H, Arsingle bondH), 7.74 (q, 4H, Arsingle bondH). ESI-MS (m/z) calcd. is 539.6, found 540.7 [M + H]+; anal. calcd. for C29H25N5O4S (539.60): C 64.55, H 4.67, N 12.98; found: C 64.54, H 4.63, N 12.95.





 Arabian Journal of Chemistry
 

Available online 11 July 2015
ORIGINAL ARTICLE

Synthesis, characterization and antimicrobial evaluation of some novel 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine bearing substituted phenylquinolin-2-one moiety

  • a Department of Pharmaceutical Sciences, Faculty of Health Sciences, Allahabad, Uttar Pradesh 211007, India
  • b Department of Pharmaceutical Chemistry, United Institute of Pharmacy, UPSIDC, Naini, Allahabad, Uttar Pradesh 211010, India
Open Access funded by King Saud University
Under a Creative Commons license
////////

Saturday, 18 October 2014

CLAISEN R.......REACTION AND MECHANISM

sigmatropic reaction in organic chemistry is a pericyclic reaction wherein the net result is one σ-bond is changed to another σ-bond in an uncatalyzed intramolecularprocess.[1] The name sigmatropic is the result of a compounding of the long-established sigma designation from single carbon–carbon bonds and the Greek word tropos, meaning turn. In this type of rearrangement reaction, a substituent moves from one part of a π-bonded system to another part in an intramolecular reaction with simultaneous rearrangement of the π system. True sigmatropic reactions are usually uncatalyzed, although Lewis acid catalysis is possible. Sigmatropic reactions often have transition-metal catalysts that form intermediates in analogous reactions. The most well-known of the sigmatropic rearrangements are the [3,3] Cope rearrangementClaisen rearrangement,Carroll rearrangement and the Fischer indole synthesis.









 3,3-sigmatropic reaarangment after that decarboxylation

Woodward hoffmann order nomenclature bond break.png


The mecahnism involves the abstraction of proton from the active methylene group of the keto-ester followed by intramolecular Michael addition and decarboxylation to yield the unsaturated ketone compound

Firstly the ketoester tautomerize to give a enol ester and then a [3,3]-sigmatropic rearrangement occur (or simply called Claisen Rearrangement). After that, the substrate become a keto-acid and it undergoes decarboxylation under heat.


Claisen rearrangement

Main article: Claisen rearrangement
Discovered in 1912 by Rainer Ludwig Claisen, the Claisen rearrangement is the first recorded example of a [3,3]-sigmatropic rearrangement.[10][11][12] This rearrangement is a useful carbon-carbon bond-forming reaction. An example of Claisen rearrangement is the [3,3] rearrangement of an allyl vinyl ether, which upon heating yields a γ,δ-unsaturated carbonyl. The formation of a carbonyl group makes this reaction, unlike other sigmatropic rearrangements, inherently irreversible.
The Claisen rearrangement

Aromatic Claisen rearrangement
The ortho-Claisen rearrangement involves the [3,3] shift of an allyl phenyl ether to an intermediate which quickly tautomerizes to an ortho-substituted phenol.

Aromatic Claisen rearrangement
When both the ortho positions on the benzene ring are blocked, a second ortho-Claisen rearrangement will occur. This para-Claisen rearrangement ends with the tautomerization to a tri-substituted phenol.
Para-Claisen rearrangement

Cope rearrangement

Main article: Cope rearrangement
The Cope rearrangement is an extensively studied organic reaction involving the [3,3] sigmatropic rearrangement of 1,5-dienes.[13][14][15] It was developed by Arthur C. Cope. For example 3,4-dimethyl-1,5-hexadiene heated to 300 °C yields 2,6-octadiene.
The Cope rearrangement of 3,4-dimethyl-1,5-hexadiene

Oxy-Cope rearrangement
In the Oxy-Cope rearrangement, a hydroxyl group is added at C3 forming an enal or enone after Keto-enol tautomerism of the intermediate enol:[16]


Oxy-Cope rearrangement













Stereochemistry rentention inversion.png





References


  1. Jump up^ Carey, F.A. and R.J. Sundberg. Advanced Organic Chemistry Part A ISBN 0-306-41198-9
  2. Jump up to:a b Woodward, R.B.Hoffmann, R. The Conservation of Orbital Symmetry. Verlag Chemie Academic Press. 2004. ISBN 0-89573-109-6.
  3. Jump up to:a b c d e f g h Miller, Bernard. Advanced Organic Chemistry. 2nd Ed. Upper Saddle River: Pearson Prentice Hall. 2004. ISBN 0-13-065588-0
  4. Jump up^ Kiefer, E.F.; Tana, C.H. J. Am. Chem. Soc.196991, 4478. doi:10.1021/ja01044a027
  5. Jump up^ Fields, D.J.; Jones, D.W.; Kneen, G. Chem. Comm 1976. 873 – 874. doi:10.1039/C39760000873
  6. Jump up^ Miller, L.L.; Greisinger, R.; Boyer, R.F. J. Am. Chem. Soc. 196991. 1578. doi:10.1021/ja01034a076
  7. Jump up^ Schiess, P.; Dinkel, R. Tetrahedron Lett.197516, 29, 2503. doi:10.1016/0040-4039(75)80050-5
  8. Jump up^ Carey, Francis A; Sundberg, Richard J (2000). Advanced Organic Chemistry. Part A: Structure and Mechanisms (4th ed.). New York: Kluwer Academic/Plenum. p. 625. ISBN 0-306-46242-7.
  9. Jump up^ Klaerner, F.G. Agnew. Chem. Intl. Ed. Eng.197211, 832.doi:10.1002/anie.197208321
  10. Jump up^ Claisen, L.Ber. 191245, 3157. doi:10.1002/cber.19120450348
  11. Jump up^ Claisen, L.; Tietze, E.; Ber. 192558, 275. doi:10.1002/cber.19250580207
  12. Jump up^ Claisen, L.; Tietze, E.; Ber. 192659, 2344. doi:10.1002/cber.19260590927
  13. Jump up^ Cope, A. C.et al. J. Am. Chem. Soc. 194062, 441. doi:10.1021/ja01859a055
  14. Jump up^ Hoffmann, R.; Stohrer, W. D. J. Am. Chem. Soc. 1971, 93, 25, 6941–6948. doi:10.1021/ja00754a042
  15. Jump up^ Dupuis, M.; Murray, C.; Davidson, E. R. J. Am. Chem. Soc. 1991, 113, 26, 9756–9759. doi:10.1021/ja00026a007
  16. Jump up^ Berson, Jerome A.; Jones, Maitland. J. Am. Chem. Soc. 1964, 86, 22, 5019–5020. doi:10.1021/ja01076a067
  17. Jump up^ Carrol, M. F. J. Chem. Soc. 1940, 704–706. doi:10.1039/JR9400000704.
  18. Jump up^ Fischer, E.; Jourdan, F. Ber. 188316, 2241.doi:10.1002/cber.188301602141
  19. Jump up^ Fischer, E.; Hess, O. Ber. 188417, 559. doi:10.1002/cber.188401701155
  20. Jump up^ van Orden, R. B.; Lindwell, H. G. Chem. Rev. 194230, 69–96. doi:10.1021/cr60095a004
  21. Jump up^ Robinson, B. Chem. Rev. 196363, 373–401. doi:10.1021/cr60224a003
  22. Jump up^ Robinson, B. Chem. Rev. 196969, 227–250. doi:10.1021/cr60262a003
  23. Jump up^ Jensen, F. J. Am. Chem. Soc.1989, 111, 13, 4643 – 4647. doi:10.1021/ja00195a018
  24. Jump up^ Klarner, F.G. Topics in Stereochemistry198415, 1–42. ISSN 0082-500X
  25. Jump up^ Kless, A.; Nendel, M.; Wilsey, S.; Houk, K. N. J. Am. Chem. Soc.1999121, 4524. doi:10.1021/ja9840192