Wednesday 5 October 2016

A Rapid microwave assisted synthesis of novel 1,4-dihydropyridines derivatives under aqueous medium



Chemistry & Biology Interface

July-August 2012, Volume 2, No.4

July-August 2012, Volume 2, No.4
Chemistry & Biology Interface, 2012, 2, 4, 206-257
(ISSN: 2249 – 4820)


A Rapid microwave assisted synthesis of novel 1,4-dihydropyridines derivatives under aqueous medium
Shailesh Thakrar, Dhairya Bhavsar, Vicky Jain, Anamik Shah 

Chemistry & Biology Interface, 2012, 2, 4, 220-227 pg 220-227, Department of Chemistry, Saurashtra University, Rajkot-360005, India
 
[Full Text-PDF]

Keywords: 1, 4-dihydro pyridines, Pyrazole aldehyde, One-pot, Microwave, Aqueous medium,
Fe+3 montmorillonite clay K-10, HY-zeolite.
Abstract: An environment friendly synthesis of 1,4-dihydropyridine derivatives was developed by one pot multi component reaction of pyrazole aldehyde, EAA/MAA, 3-amino crotononitrile and Fe+3 montmorillonite clay K-10/ HY-zeolite under microwave irradiation in aqueous medium. The structures of all synthesized compounds were well characterized by Mass, FT-IR, 1H NMR and elemental analysis.

Methyl 5-cyano-1,4-dihydro-2,6-dimethyl- 4-(1,3-diphenyl-1H-pyrazol-4-yl)pyridine- 3-carboxylate (5a): MP: 182-184 oC; IR (cm-1): 3489, 3367, 3198, 2974, 2897, 2332, 2260, 1707, 1660, 1587, 1519, 1435, 1356, 1282, 744, 688. MS: m/z = 426.17; 1H NMR (DMSO-d6) δ ppm: 2.14(s, 6H), 2.58(s, 3H), 4.91(s, 1H), 6.91-6.99(d, 2H), 7.20-7.22(t, 2H), 7.29-7.31(t, 1H), 7.45-7.49(t, 2H), 7.60-7.62(d, 1H), 7.71-7.73(d, 2H), 7.95(s, 1H), 8.74(s, 1H). MS: m/z: 410.17; Anal. Calcd. for C25H22N4O2: C, 73.15; H, 5.40; N,13.65; O,7.80; Found: C, 73.06; H, 5.36; N, 13.61; O,7.79(%).





//////////////

Lewis acid-catalyzed 2-arylquinazoline formation from N′-arylbenzimidamides and paraformaldehyde

Graphical abstract: Lewis acid-catalyzed 2-arylquinazoline formation from N′-arylbenzimidamides and paraformaldehyde




2-phenylquinazoline (2a, CAS: 25855-20-3)[2]

1 H NMR (400 MHz, CDCl3, ppm) δ 9.48 (s, 1H), 8.63-8.60 (m, 2H), 8.11-8.09 (m, 1H), 7.95-7.89 (m, 2H), 7.64-7.60 (m, 1H), 7.57-7.49 (m, 3H);

13C NMR (100 MHz, CDCl3, ppm) δ 161.1, 160.5, 150.8, 138.0, 134.1, 130.6, 128.6, 128.6, 128.6, 127.2, 127.1, 123.6 ;

MS (EI) ) m/z (%) 206, 197, 179, 105 (100), 77.

Wang, H. M.; Chen, H.; Chen, Y.; Deng, G. J. Org. Biomol. Chem. 2014, 12, 7792

2-phenylquinazoline








Lewis acid-catalyzed 2-arylquinazoline formation from N[prime or minute]-arylbenzimidamides and paraformaldehyde

Green Chem., 2016, Advance Article
DOI: 10.1039/C6GC02319C, Communication
Xiufang Cheng, Huamin Wang, Fuhong Xiao, Guo-Jun Deng
An efficient procedure for the synthesis of 2-arylquinazolines from N[prime or minute]-arylbenzimidamides has been developed under transition-metal-free conditions.

An efficient procedure for the synthesis of 2-arylquinazolines from N′-arylbenzimidamides has been developed under transition-metal-free conditions. In this process, stable and low-toxicity paraformaldehyde was used as the carbon source. A broad range of functional groups were well tolerated in this reaction system.

Lewis acid-catalyzed 2-arylquinazoline formation from N′-arylbenzimidamides and paraformaldehyde

Xiufang Cheng,a   Huamin Wang,a   Fuhong Xiao*a and  Guo-Jun Deng*a  
*
Corresponding authors
a
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
E-mail: gjdeng@xtu.edu.cnfhxiao@xtu.edu.cn
Fax: (+86)0731-5829-2251
Tel: (+86)0731-5829-8280
Green Chem., 2016, Advance Article

DOI: 10.1039/C6GC02319Chttp://pubs.rsc.org/en/Content/ArticleLanding/2016/GC/C6GC02319C?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract





























////////////////

Sunday 18 September 2016

Synthesis and Antifungal Activity Against Candida Strains of Mesoionic System Derived From 1,3-Thyazolium-5-thiolate






General procedure for the preparation of ten newly synthetized compounds - 2-(p-chlorophenyl)-3-methyl-4- (p-isopropylphenyl)-1,3-thiazolium-5-(N-arylacetamide)thio chloridrates 7a-j Mesoionic 2-(p-chlorophenyl)-3-methyl-4-(pisopropylphenyl)-1,3-thiazolium-5-thiolate 5 (278 mmol) was dissolved in hot ethanol and then 2-chloro-Narylacetamides 6a-j (278 mmol) were added. The system was refluxed for 4 h and then concentrated at reduced pressure, giving a yellow-orange solid.


R1, R2 =H, H
7a


2-(p-Chlorophenyl)-3-methyl-4-(p-isopropylphenyl)-1,3- thiazolium-5-(N-phenylacetamide)thio chloridrate 7a Yield: 92.13%;

m.p.: 130-132 °C; anal. calcd.: C, 60.58; H, 4.69; N, 5.43; S, 12.44; found: C, 60.60; H, 4.70; N, 5.42; S, 12.42;

IR (KBr) νmax / cm-1 3181 (NH), 3003 (CHAr.), 2958 (CHAlif.), 1680 (C=O), 1599, 1551, 1491 (C=C and C=N of aromatic and heterocyclic rings), 1442 (C–N of N–CH3), 1404 (C–N), 1092 (C–Cl), 1001, 922 (CHAr.), 756 (NH), 557, 537 (C–C);

1 H NMR (200 MHz, CDCl3) delta
1.30 (d, 6H, J 6.9 Hz, H-16, H-16’),
2.98 (sept, 1H, H-15), 3.79 (s, 2H, H-17),
3.84 (s, 3H, H-10), 7.09 (t, 2H, J 7.3 Hz, H-23),
7.28-7.34 (m, 4H, H-13, H-13’, H-21, H-25),
7.60 (d, 2H, J 8.1 Hz, H-8, H-8’),
7.73 (d, 2H, J 7.9 Hz, H-12, H-12’),
7.86-7.93 (t, 4H, J 7.3 Hz, H-7, H-7’, H-22, H-24),
11.02 (s, 1H, H-19);


13C NMR (50 MHz, CDCl3)
delta 170.21 (C-2), 166.81 (C-18), 152.68 (C-14),
140.28 (C-4), 138.93 (C-9), 132.04 (C-20), 131.64 (C-7, C-7’), 130.89 (C-12, C-12’),
130.27 (C-8, C-8’), 128.69 (C-22, C-24), 127.54 (C-13, C-13’),
124.09 (C-23), 123.79 (C-11), 123.59 (C-6),
120.28 (C-21, C-25), 42.24 (C-17), 40.92 (C-10), 34.21 (C-15), 23.76 (C-16, 16’).








Peixoto IN, Souza HDS, Lira BF, Silva DF, Lima EO, Barbosa-Filho JM, et al. Synthesis and Antifungal Activity AgainstCandida Strains of Mesoionic System Derived From 1,3-Thyazolium-5-thiolate. J. Braz. Chem. Soc. 2016;27(10):1807-1813

*e-mail: athayde-filho@quimica.ufpb.br
J. Braz. Chem. Soc. 2016, 27(10), 1807-1813

Synthesis and Antifungal Activity Against Candida Strains of Mesoionic System Derived From 1,3-Thyazolium-5-thiolate


Isabelle N. Peixoto; Helivaldo D. S. Souza; Bruno F. Lira; Daniele F. Silva; Edeltrudes O. Lima; José M. Barbosa-Filho; Petrônio F. de Athayde-Filho

Ten new mesoionic derivatives from the 1,3-thiazolium-5-thiolate system with substituted acetamides were synthesized, had their potential as new drug evaluated in an in silico study and in their activity as antifungal against strains of Candida albicans.

http://dx.doi.org/10.5935/0103-5053.20160063

Published online: February 26, 2016
http://jbcs.sbq.org.br/imagebank/pdf/151131AR.pdf


Petrônio Filgueiras Athayde-Filho

Petrônio F. de Athayde-Filho
Universidade Federal da Paraíba

Universidade Federal da Paraíba
https://www.researchgate.net/profile/Petronio_Athayde-Filho

Image result for Universidade Federal da Paraíba Departamento de Química

Image result for Universidade Federal da Paraíba Departamento de Química

Image result for Universidade Federal da Paraíba Departamento de Química



//////////

Tuesday 6 September 2016

Imine Reduction Using Iron Catalysts

Imine Reduction Using Iron Catalysts




















Abnormal-NHC-Fe(0) complex outperforms noble metal catalysts


Read more

http://www.chemistryviews.org/details/news/9749451/Imine_Reduction_Using_Iron_Catalysts.html?elq_mid=11741&elq_cid=1558306




A Highly Efficient Base-Metal Catalyst: Chemoselective Reduction of Imines to Amines Using An Abnormal-NHC–Fe(0) Complex

 Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
 Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
Organometallics, Article ASAP
DOI: 10.1021/acs.organomet.6b00478
P
*E-mail for S.K.M.: swadhin.mandal@iiserkol.ac.in.

Abstract Image
A base-metal, Fe(0)-catalyzed hydrosilylation of imines to obtain amines is reported here which outperforms its noble-metal congeners with the highest TON of 17000. The catalyst, (aNHC)Fe(CO)4, works under very mild conditions, with extremely low catalyst loading (down to 0.005 mol %), and exhibits excellent chemoselectivity. The facile nature of the imine reduction under mild conditions has been further demonstrated by reducing imines towards expensive commercial amines and biologically important N-alkylated sugars, which are difficult to achieve otherwise. A mechanistic pathway and the source of chemoselectivity for imine hydrosilylation have been proposed on the basis of the well-defined catalyst and isolable intermediates along the catalytic cycle.



Swadhin K. Mandal

Image result for Swadhin K. Mandal


Swadhin Mandal
Associate Professor
Dept: Chemical Sciences (DCS)
E-mail: swadhin.mandal [at] iiserkol.ac.in
Personal homepage: Click Here

Research Interest: 

    Organometallic chemistry and its application in catalysis, new drug development and material chemistry

Academic Background:
  1. BSc (Chemistry), University of Kalyani, 1993, Secured 3rd Rank in University
  2. MSc (Chemistry), University of Kalyani, 1996, Secured first rank in University
  3. PhD (Chemistry), Indian Institute of Science Bangalore, 2002

Positions:
  1. Postdoctoral Fellow, University of California, Riverside (2002 - 2005)
  2. Alexander von Humboldt Fellow, University of Goettingen (2006 - 2007)
  3. Assistant Professor, IISER Kolkata (2007 - 2013)
  4. Associate Professor, IISER Kolkata (2013 - 2014)
  5. Associate Professor, IISER Kolkata ( - )

Awards and Honors:
  1. Alexander von Humboldt Fellowship from Alexander von Humboldt Foundation (2005)
  2. YIM Boston Young Scientist Award from YIM Boston at MIT, USA (2012)
Selected Publications
    
  • Bhunia et al. Organometallics, in press2016
  • Paira, Singh et al. J. Org. Chem., 2016, 81 (6), 2432-2441.
  • Pariyar et al.  J. Am. Chem. Soc. 2015, 1375955-5960 (This work was highlighted by Press coverage, see some links  natureINDIABusiness Standard, IBN7The Statesman,ZeeNewsYahooCrazyengineersDelhi Daily NewsIndia SamvadKansas City Post,Indianapolis Post,  Toronto TelegraphSeattle IndiaMaine MirrorHawaii Telegraph,Indusage).
  • Hota et al. Adv. Synth. Cat. 2015, 357, 3162 - 3170.
  • Raha Roy et al.  ACS Catalysis 201444307–4319 (Selected as a significant recent publicationin a cross-journal virtual issue designed to showcase the significant recent publications among ACS CatalysisJournal of the American Chemical SocietyJournal of Organic Chemistry, and Organic Letters.)
  • Raha Roy et al.  J. Org. Chem. 2014, 79, 9150-9160. 
  •  Sau et al.  Chem. Asian J 20149, 2806-2813. 
  • Raman et al. Nature , 2013., 493, 509-513 ( This work was selected for Press Release coverage by Nature, see some links TelegraphDeccan HeraldNature India, please see Press Release for more news coverage on this work for further details)
  • Santra et alACS Catalysis  2013, 3, 2776−2789.
  • Mukherjee et alOrganometallics  2013, 32, 7213-7224
  • Sau et alAdv. Synth. Cat.  2013, 355, 2982-2991
  • Mukherjee et alScientific Reports  2013, 3, 2821.
  • Mukherjee et al. Chem. Eur. J. 2012, 18, 10530-10545 (Highlighted with  Frontispiece Graphics)
  • Sen et al. Chem. Eur. J. 2012, 18, 54-58.
  • Sau et al. Chem. Commun. 2012, 48, 555-557.
  • Santra et al. Green Chem. 2011, 13, 3238 – 3247.
  • Sen et al. Chem. Commun. 2011, 47, 11972–11974
  • Mukherjee et al. Angew. Chem. Int. Ed. 2011, 50, 3968–3972  (Hot Paper)


Professional Recognitions
  • "SKM delivers Physics Colloquium at University of Greifswald, Germany", 2016.
  • Selected  and presented work as one of the six speakers in “Organometallics Fellowship Symposium” organized at San Francisco during 10-14th August, USA by the ACS Journal Organometallics.
  • Joined Editorial Advisory Board of the Journal 'Organometallics' published by American Chemical Society 2013-2015
  • Recipient of YIM-Young Scientist Award -2012 by YIM-Boston held during 6-8th October, 2012 at MIT, Boston, USA for his contribution in the area of Organometallic Chemistry. He is one of the two recipients of this award for the year 2012.
  • Alexander von Humboldt Fellowship during 2006-2007 at University of Goettingen, Germany.
Selected Publications:
  1. Raman, Karthik V; Kamerbeek, Alexander M.; Mukherjee, Arup; Atodiresei, Nicolae; Sen, Tamal K; Lazic, Predrag; Caciuc, Vasile; Michel, Reent; Stalke, Dietmar; Mandal, Swadhin K; Bluegel, Stephan; Muenzenberg, Markus and Moodera, Jagadeesh. 2013. "Interface-engineered templates for molecular spin memory devices." Nature, 493, 509-513
  2. Sen, Tamal K; Mukherjee, Arup; Modak, Arghya; Mandal, Swadhin K and Koley, Debasis. 2013. "Substitution Effect on Phenalenyl Backbone in the Rate of Organozinc Catalyzed ROP of Cyclic Esters." Dalton Trans., 42, 1893-1904
  3. Mukherjee, Arup; Sen, Tamal K.; Ghorai, Pradip Kr.; Samuel, Prinson P.; Schulzke, Carola and Mandal, Swadhin K. 2012. "Phenalenyl-Based Organozinc Catalysts for Intramolecular Hydroamination Reactions: A Combined Catalytic, Kinetic, and Mechanistic Investigation of the Catalytic Cycle." Chemistry -A European Journal, 18, 10530-545

Picture





Gonela Vijay Kumar, SRF

Research Interest:
Development of Nucleophilic Boron Compounds and its Reactivity.
Email - 
gonela.vijaykumar@gmail.com




Picture






Pradip Kumar Hota, SRF
Research Interest:
Transition Metal Mediated  C-C Coupling Reactions.

Email - pradip.hota87@gmail.com



Picture






Mrinal Bhunia, SRF

Research Interest:
Development of Abnormal Carbene based Transition Metal Complexes for Synthesis of Pharmaceutically Important Molecules.
Email - mrinalbhuniaa@gmail.com